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ABSTRACT. Biogas processes play an important role in the disposal of organic waste. However, these processes are difficult 

to control because they are highly sensitive and variable. A lot of work has been done to date in order to eliminate this 

problem. With the development of technology and artificial intelligence, the spread of “Autonomous” systems has become 

widespread in the control of anaerobic processes as in many other fields. The Anaerobic Digestion Model No. 1 (ADM1) 

developed by the International Water Association (IWA) has been adopted as the standard model for the AD process since 

2002. With the development of this model, Simple Regression Tree (SRT), Probabilistic Neural Networks (PNN), Artificial 

Neural Networks (ANN), Gradient Boosted Tree (GBT), Linear Regression (LR), Tree Ensemble Regression (TER), Random 

Forest Regression (RFR), Polynomial Regression (PR), Fuzzy Logic (FL), Adaptive Network-Based Fuzzy İnference System 

(ANFIS), Different ML algorithms such as Support Vector Machine (SVM), Particle Swarm Optimization (PSO), Genetic 

Algorithm (GA) Developing Data-Driven Models (DDDV), Deep neural network (DNN) have been used in various studies 

and tried to perform process optimization, real-time monitoring, disturbance detection and parameter estimation. In this study, 

the data obtained by using the Bibliometrix package and Biblioshiny package through the R programming language in the 

R-Studio programme were evaluated. For this purpose, a total of 80 articles in the field of ‘Machine Learning’ in the Web of 

Science (WoS) database between 2012-2024 in the fields of ‘Biogas Production’, ‘Methane Production’ and ‘Anaerobic 

Digestion’ processes were accessed and evaluated. As a result of the evaluations, the development of ML models in biogas 

processes was determined and recommendations were presented. 
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1. INTRODUCTION 

Globally, the primary energy supply still relies heavily on 

traditional sources such as oil, coal, natural gas, and nuclear 

energy [1]-[3]. However, due to the limited availability of 

these resources [4], as well as their contribution to 

greenhouse gas emissions and environmental pollution [5]-

[8], renewable energy sources are increasingly being 

considered as sustainable alternatives to mitigate the 

impacts of non-renewable energy use. In recent years, there 

has been a significant increase in efforts to improve process 

stability, enhance specific methane yield, and boost 

economic efficiency [9]-[28]. Anaerobic digestion (AD), a 

process that converts organic waste into biogas, has gained 

attention for its ability to support waste-to-energy 

conversion, promote renewable energy use, and diversify 

energy supplies in rural areas [29], [30]. Accurate 

prediction of biogas yield and economic feasibility is 

essential for the effective implementation of AD systems. 

However, AD optimization is challenging due to the 

involvement of numerous physical, chemical, and 

biological variables [31]. Various approaches have been 

explored to address these complexities, among which 

multi-criteria decision-making (MCDM) methods stand out 

[32], [33]. These methods assign numerical values to 

alternatives and criteria and use pairwise comparisons to 

identify the most suitable option [33], [34]. In parallel, 

machine learning (ML) models have gained significant 

traction due to their ability to process large datasets, 

recognize patterns, and offer predictive solutions. ML 

techniques such as artificial neural networks (ANN) and 

deep learning (DL) have been widely and successfully 

applied to model AD processes because of their strong 

capacity to capture non-linear relationships [16]-[27], [35]-

[37], [39]-[45]. This study investigates the development of 

ML applications in AD through bibliometric analysis and 

presents novel solution approaches. One of the key 

innovative aspects of this study is the lack of advanced 

research using ML to predict the effects of specific 

microorganisms and their enzyme production capacities on *Corresponding author: rifatyildirim@isparta.edu.tr  
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AD performance. Although many studies have explored 

genetically modified microorganisms (GMMs) with 

enhanced enzyme activity, none have used ML to predict 

their effects without experimental procedures, which marks 

another novel contribution of this work. Furthermore, with 

the rapid advancements in bioinformatics, this study 

suggests that ML can be used to identify gene regions 

suitable for intervention (e.g., through cloning) in 

hydrolytic bacteria and/or methanogenic archaea. This 

could pave the way for groundbreaking innovations in 

biogas production, enabling predictive, non-experimental 

approaches to genetic modifications in AD systems. 

In biogas facilities, automation systems are already 

employed to monitor real-time data such as pH, electrical 

conductivity (EC), volatile fatty acids (VFA), and 

especially methane (CH₄ ) concentration. However, 

interpreting these data and taking the necessary actions 

often depend on the experience of the operational staff. In 

cases where experience is lacking, significant damage to the 

AD process may occur, leading to time loss, financial 

setbacks, and reputational damage. To prevent such issues, 

machine learning can be used to determine key operational 

parameters—such as hydraulic retention time (HRT), 

organic loading rate (OLR), and inoculum-to-substrate (I/S) 

ratio—based on real-time and historical data. This study 

contributes to the advancement of "Autonomous Biogas 

Plants" by integrating artificial intelligence into AD 

systems, aiming to maximize methane production and 

maintain high operational efficiency continuously. 

2. MATERIALS AND METHODS 

2.1 Bibliometric Method 

Bibliometric studies are highly valuable in identifying new 

ideas and approaches on relevant topics, developing 

specific areas of knowledge, identifying gaps, providing an 

overview of topics, and evaluating publication impact [46]-

[48]. In studies, it is possible to examine many factors such 

as the contributions of the authors, the number of citations, 

the authors conducting research, the journals in which the 

articles were published, the countries where the 

publications were made, and the distribution of keywords 

by years [47]-[50]. The aim of this study is to evaluate the 

bibliometric properties of the concept of “Machine 

Learning” in AD processes in the Web of Science (WoS) 

database. In this context, the studies on the concept of 

“Machine Learning” with the keywords “Biogas 

Production”, “Methane Production” and “Anaerobic 

Digestion” and published in the WoS database were 

analyzed according to the years, number of citations, 

authors and journals, keywords of the publications and the 

relations of the related keywords with each other. The 

distribution of the number of citations, categorical 

clustering analysis and country distributions of the 

publications on the concept of “Machine Learning” were 

visualized with the R program and the results of the analysis 

were evaluated according to the literature. In the research, 

no year limit was imposed while searching the WoS 

database. During the search, 3 separate searches were 

performed using other keywords while keeping “Machine 

Learning” constant. The 150 articles obtained as a result of 

the search were examined, and a total of 80 articles related 

to the subject were identified when the irrelevant and 

repetitive articles were removed. All other operations were 

carried out on these 80 articles. 

2.2 Machine Learning (ML) 

AD processes are very sensitive to changes in the 

environment. Therefore, monitoring, control and 

optimization of this process is very difficult [41]. To date, 

various studies have been carried out to overcome these 

difficulties in AD processes. However, due to the large 

number of unknown parameters in these processes, it has 

been very difficult to increase efficiency or optimize 

process efficiency. This situation has become even more 

difficult due to seasonal conditions, substrate variations, 

especially changes in microbial activities in AD processes 

due to these variations. This is especially difficult in plants 

with variable substrate inputs. Therefore, various statistical, 

mathematical, logical, etc., studies have been carried out to 

overcome these problems and to maintain the stability/yield 

of AD processes. However, these traditionally applied 

methods and mechanistic models have their own difficulties 

and pitfalls. 

Typically, mechanistic models or machine learning (ML) 

are used to model the AD process [43]. Therefore, it has 

been proposed by many researchers to build robust data-

driven models that facilitate the development of robust 

data-driven models that utilize and interpret the complex 

information required for AD processes to function properly. 

ML has been used in many studies as an alternative method 

to address these constraints, and as shown in this study, 

there have been many studies using ML. The first model 

developed as a product of these studies, the anaerobic 

digestion model No. 1 (ADM1), is a representative model 

that simulates AD based on mass balance and kinetics of 

multiple reactions [51]. The model has been widely used 

and subjected to some updates to adjust parameters for 

accurate simulation [52]. The updated ADM1s have been 

used for methane (CH4) and volatile fatty acids (VFAs) [53] 

and digestion of agricultural wastes such as oranges and 

apples [54] and obtained accurate predictions. However, 

ADM1-based models have limitations for accurate 

simulation as the kinetic model depends only on the amount 

of biomass [42], [55]. Modeling AD plays an important role 

in monitoring processes and making some predictions. 

One way to model the AD process is through a 

comprehensive mechanistic description of the AD process. 

Among mathematical models, the Anaerobic Digestion 

Model No. 1 (ADM1) [51] developed by the International 

Water Association (IWA) is by far the most comprehensive 

model used by many researchers [56]-[59]. This model has 

been adopted as the standard model for the AD process 

since 2002 [60]-[62]. Initial studies with ADM1, which has 

been developed into several different models [36], [63]-

[66], used a calibrated simulation model of a full-scale 

biogas plant and showed that the anaerobic digestion 

process can be predicted with an overall accuracy of 90% 

[56]. 

ADM1, which can make accurate predictions of some AD 

variables such as biogas production and waste 

concentration [67], [68], describes, with the help of rate 
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equations and model parameters, the main known chemical 

pathways from the hydrolysis of polymers and monomers 

to the formation of organic acids, acetic acid, hydrogen and 

biogas. In addition, ADM1 includes conditions that inhibit 

the process, such as those related to pH, hydrogen, 

ammonia and inorganic nitrogen [43]. Besides these 

advantages, adapting and calibrating ADM1 to various 

variants of AD processes is a challenge due to limitations 

in knowledge of microbial consortium composition and 

complex strain-specific metabolic pathways that require 

extensive measurements and analyses [51]. 

Due to these challenges, the development of machine 

learning (ML) algorithms has become imperative. With the 

help of ML, process optimization, real-time monitoring, 

disturbance detection and parameter estimation can be 

performed [42]. In this context; Simple Regression Tree 

(SRT), Probabilistic Neural Networks (PNN), Artificial 

Neural Networks (ANN), Gradient Boosted Tree (GBT), 

Linear Regression (LR), Tree Ensemble Regression (TER), 

Random Forest Regression (RFR), Polynomial Regression 

(PR), fuzzy logic (FL), Different machine learning 

algorithms such as adaptive network-based fuzzy inference 

system (ANFIS), support vector machine (SVM), genetic 

algorithm (GA) and particle swarm optimization (PSO), 

developing data-driven models (DDDV), Deep neural 

network (DNN) are used in various studies [17], [23]-[27], 

[39], [40], [42], [43], [59], [69]-[74]. Such modern machine 

learning models have the ability to accurately predict the 

necessary but missing data for AD. For this, model training 

is first performed with the help of datasets. Then, the 

resulting model is tested [75] and after these processes, the 

missing data is predicted [76]. 

3. RESULT and DISCUSSION 

When the data obtained by using the Bibliometrix package 

and Biblioshiny package through the R programming 

language in R-Studio were evaluated, a total of 80 articles 

were reached between 2012-2024 in the field of “Machine 

Learning” in the “Biogas Production”, “Methane 

Production” and “Anaerobic Digestion” processes. The 80 

articles were written in 35 different journals, by 387 

different authors and using a total of 311 keywords. 4708 

references were used in the articles. International co-

authorship was 45%. No single author was found on the 

subject and it was determined that the other articles were 

written by approximately 6 authors (5.51). The top 4 

journals in which the articles were published were 

Chemical Engineering Journal (n:9), Science of The Total 

Environment (n:8), Journal of Cleaner Production (n:7), 

Environmental Science and Pollution Research (n:6). 

Bioresource Technology (n:393) was the most cited journal 

due to the high number of ML and AD studies, despite not 

publishing articles directly related to the topic. The most 

cited country was China with 328 citations and it was found 

that 9 of the 22 studies prepared by Chinese authors were 

prepared with the participation of authors from more than 

one country, and the most cited documents (n:104) were 

Kim et al., (2020) [77] and De Clercq et al., (2020) [63]. 

The institution that publishes the most on the subject is 

Univ Nottingham Malaysia (n:11). 

Figure 1 shows the three domain graphs. Through this 

graph, the 15 authors with the highest number of 

publications in the field of “Machine Learning” with the 

keywords “Biogas Production”, “Methane Production” and 

“Anaerobic Digestion”, the 15 frequently repeated 

keywords (in the abstracts) and the 15 journals that were 

most frequently used (most cited) while preparing the 

studies were visualized. This graph provides information 

about which keywords the authors use the most and the 

most influential authors in these studies. The figure shows 

that Chan yj (impact factor: 145), Zhang y (impact factor: 

103) and Wang l (impact factor: 81) are the most influential 

authors and these three authors were found to be the most 

influential authors and Bioresource Technology (impact 

factor: 296), Water Research (impact factor: 296) and 

Renewable and Sustainable Energy Reviews (impact 

factor: 296) are the most relevant journals. As a result of the 

examinations, various methods (ANN, XGBoost, kNN, RF, 

etc.) were used in studies using machine learning, ), various 

wastes and additives were added (wood waste, 

microplastics, poultry manure, food waste, Fe3O4 additive, 

animal manure, palm oil wastewater, ZVI (Zero valent 

iron), Biochar, various predictions (UYA, biogas yield, 

odor gases, biogas plant operating cost, AD liquid level 

prediction, ML benchmarking) and microorganism 

interactions and effects, gene and genome sequences were 

examined. 

When the “Trending Topics” words in the abstract sections 

of the 80 articles analyzed were examined, it was seen that 

the first studies with ML started across “biogas plants”. 

Then, it was determined that especially since 2021, 

researches were conducted on “biogas production”, 

“methane yield” and “anaerobic digestion”. In today's 

studies, it was observed that the keywords “cod removal”, 

“importance analysis” and “feature importance” were 

widely used, and studies in which various ML models were 

tested on AD were emphasized. As can be seen in Figure 2, 

studies on ML in biogas processes are quite diverse. With 

the help of interdisciplinary studies, it is aimed to overcome 

the problems experienced in biogas processes. However, 

the applicability of ML models in AD processes is still one 

of the biggest problems today due to access to accurate and 

sufficient data. In order to overcome these problems, a 

network should be created and accessibility to “accurate 

and sufficient” data should be increased by making this 

information available. In this way, a big step will be taken 

in the fight against climate change, which is a global 

problem, regarding the disposal of organic wastes. 

With the realization that machine learning (ML) should be 

applied to improve the efficiency, sustainability and 

profitability of biogas processes [78], many models have 

been created and used to control and support AD processes 

[79], [80].  
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Fig. 1. Three Field Graph 

However, early models did not reflect the reality as 

important parameters such as hydraulic retention time 

(HRT) [81] and temperature [82] were considered as 

“constant values” [23]. Many publications cannot provide 

data on the ten variables (inoculum types, volume (mL), 

temperature (℃), particle size (mm), inoculum-substrate 

ratio (according to VS), cellulose content (%), 

hemicellulose content (%), lignin content (%), digestion 

time (g), climate and process conditions) selected to create 

the ML dataset [83], [84]. Therefore, there is a great danger 

that the data obtained may not reflect the reality. 

 

Fig. 2. Co-occurrence Network 

In order to optimize the AD process, ML-based models 

have been applied to many types of wastes and additives 

[wood waste; [31], microplastic; [89]-[92], poultry manure; 

[93], food waste; [94], Fe3O4 additive [71], animal manure; 

[40], palm oil wastewater; [25], ZVI (Zero valent iron) [87], 

Biochar [95], [96], [132], microorganism interactions and 

effects, gene and genome sequences [33], [36], [52], [65], 

[88], [92], [97], [105] and various estimates UYA; [52], 

[106], methane emissions; [73], [74], [107], hydrogen 

production; [108], biogas/methane yield/production; [13]-

[15], [17]-[24], [26], odor gases; [38], biogas plant 

operating cost; [16], [29], [31], AD liquid level prediction; 

[41], ML benchmarking; Ling et al., 2024 [42], methane 

solubility in aqueous phase; [109]. 

It is understood that for the estimation of biogas production 

potentials, substrate properties (pH, EC, OM, etc.) are 

usually estimated with the help of physical and chemical 

properties such as process temperatures, hydraulic retention 

times, organic loading rate (Appendix A). The first article 

identified within the scope of this study was published by 

Gaida et al. (2012) [56] in 2012. In this article, ADM1 was 

used and predictions were developed for a full-scale biogas 

plant with 90% accuracy. Subsequently, Jones and Salter 

(2013) [79] and Anderson et al. (2013) [80] performed 

profit/loss analyses of biogas units assuming some values 

as constant. Pioneered by these studies, other studies have 

been carried out on AD processes using various wastes and 

methods. Microorganism, gene and genome studies have 

accelerated with the advancement of technology and firstly, 

Vendruscolo et al. (2020) [99] investigated the microbial 
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community structure changes in two biodigesters using 

metagenome analysis. Subsequently, Long et al. (2021) 

[36] conducted studies and Yao et al. (2022) [98] developed 

the “Genomics-enable hybrid” model. In later studies, 

various studies were carried out using improved ML 

models and more data. In these studies, 80% of the data 

were generally used in the training phase and 20% in the 

testing phase. However, in some studies [13], [16], [76], 

[96], [108], some of the data were used for “validation”. R2 

values were found to be quite high in most of the studies.  

In some studies, the large amount of data used caused 

decreases in R2 values [24], [30], [107]. This proves that it 

is more important to have appropriate and consistent data 

rather than a large number of data. The most comprehensive 

study for Turkey is the study conducted by Pence et al. 

(2023) [40] in which the animal manure-based biogas 

potentials of Antalya, Isparta and Burdur provinces located 

in the Western Mediterranean Region of Turkey were 

calculated. However, while there are many studies using 

genetically modified microorganisms (GMMs) whose 

enzyme production yields are increased by mutations [39], 

[110]-[131], no study was found to predict the effects of 

these GMMs with ML without experimentation. 

4. CONCLUSION and SUGGESTIONS 

Bibliometric analysis is an important convenience in terms 

of giving researchers an idea about the subject to be 

analyzed by selecting appropriate keywords. However, 

when searching the WoS database, if the settings and 

restrictions are not fully defined, some publications cannot 

be accessed and some publications that are not related to the 

subject may be found in the analysis. Therefore, care should 

be taken when conducting the review. As a result of the 

reviews, various methods (ANN, XGBoost, kNN, RF, etc.) 

are used in studies using machine learning, ), various wastes 

and additives were added (wood waste, microplastics, 

poultry manure, food waste, Fe3O4 additive, animal 

manure, palm oil wastewater, ZVI (Zero valent iron), 

Biochar, various predictions (UYA, biogas yield, odor 

gases, biogas plant operating cost, AD liquid level 

prediction, ML benchmarking) and microorganism 

interactions and effects, gene and genome sequences were 

examined. It is also recognized that microorganisms are 

highly determinant parameters related to AD processes. 

Although it is known that the enzymes secreted by 

microorganisms in the hydrolysis, acetogenesis, 

acidogenesis and methanogenesis stages of AD processes 

are of vital importance for biogas processes, there is no 

advanced study on ML to predict the effects of specific 

microorganisms on AD processes and the positive / 

negative effects of enzyme production capacity of 

microorganisms on AD. 

One of the other shortcomings is the lack of understanding 

regarding which physical and/or chemical mutagen affects 

which gene region, thereby increasing enzyme production 

capacity (lipase, cellulase, amylase, protease, etc.). Finally, 

in an era where bioinformatics studies are advancing day by 

day, monitoring developments in AD processes through 

cloning studies will allow groundbreaking innovations in 

biogas processes by enabling the prediction of which gene 

regions need to be targeted through ML, without the need 

for experimental studies on controlled changes (cloning, 

etc.) in the gene regions of hydrolytic bacteria and/or 

methanogenic archaea. 

Using automation systems for real-time monitoring of AD 

systems, parameters such as pH, EC, TAN, and especially 

CH4 can be used to determine HRT, OLR, and I/S ratios via 

ML [133]-[135]. This allows AI to propose solutions based 

on real-time data and historical information (obtained 

through training), thereby maximizing efficiency in AD 

processes. In "dual systems" where hydrolysis and methane 

production stages are in separate reactors, monitoring 

parameters like pH, EC, and TAN of the hydrolysis reactor 

can help determine the substrate amount (OLR) and 

hydraulic retention times (HRT) prior to hydrolysis. This 

ensures that the substrate used in the methane production 

stage is of high quality and suitable for the highly sensitive 

methanogenesis stage (with more monomers due to 

decomposition processes). This will be highly beneficial for 

sustainable AD processes, maintaining high biogas yields. 

In reactors where the methanogenesis stage is sustained, the 

required post-hydrolysis substrate amount can be 

determined by continuous or intermittent measurements of 

biogas volume and methane content. Consequently, 

interventions can be made in the Hydrolysis and 

Methanogenesis stages based on the information provided 

by AI trained with ML. 

After establishing this system, it is essential to have a 

deeper understanding of the microorganisms involved for a 

more sustainable AD process. Metagenomic analyses 

carried out at certain intervals can closely examine the 

changes of microorganisms involved in AD processes from 

a microbiological point of view. Using the data obtained, 

ML-based predictive models can be developed. This will 

allow the dosing of hydrolytic bacteria and methanogenic 

archaea - previously identified and isolated with high 

enzyme production efficiencies (lipase, cellulase, protease, 

amylase, etc.) - into AD processes in desired quantities. 

Consequently, methane yield from AD processes can be 

maintained at consistently optimal levels, giving rise to the 

concept of "Autonomous Biogas Plants" empowered by 

artificial intelligence. 
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