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ABSTRACT. Drought is a complex natural phenomenon resulting from prolonged periods of below-average precipitation.
Its gradual development over large areas makes it challenging to accurately determine its onset, duration, and overall impact.
This study developed an artificial neural network (ANN) method-based model to predict the standard precipitation index
(SP1), an index commonly used to determine drought severity. SP112, which reflects a meteorological drought indicator to
monitor precipitation anomalies over 12-month accumulation periods, was estimated based on the artificial neural network
(ANN) method using monthly precipitation data recorded in the 1980-2015 period for Kayseri. The North Atlantic Oscillation
Index (NAOI), Mediterranean Oscillation Index (MOI), and Arctic Oscillation Index (AOI), which represent large-scale
global cycles, were used as input variables in the models. A multilayer perceptron-type ANN model with a single hidden
layer was chosen. The model training used 70% of the data and a scaled conjugate gradient backpropagation algorithm. The
remaining 30% of the data were used for model testing and control. The activation functions of the ANN model and the
number of neurons in the hidden layer were determined using the trial-and-error method. The performances of the models
were evaluated using the mean Nash-Sutcliffe coefficient of efficiency (NSE), root mean square error (RMSE), and
coefficient of determination (R?) of agreement between the estimated and observed SP112 values. This study demonstrated
that drought conditions can be successfully predicted 3, 6, and 12 months in advance using indices reflecting large-scale
global climate anomalies.
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1. INTRODUCTION over months or even years, and affects vast areas. It is also
challenging to determine the beginning, end, effects, and

In recent years, due to changing climate characteristics,
consequences of droughts.

rapid development of the energy, industry, and agriculture
sectors, and population growth, water demand has been
steadily increasing, and water shortages are becoming more
frequent. The frequency and severity of drought events are
changing in many regions of the world. Understanding
these changes and predicting future conditions are critical
for preventing climate-related disasters.

Various indices have been developed to characterize and
monitor drought events. Each of these indices captures
different aspects of drought, depending on data availability
and the type of drought being studied [1]. Among these, the
Standardized Precipitation Index (SPI) is one of the most
widely used because of its simplicity, applicability over
multiple timescales, and calculability based only on

Drought is a disaster that occurs when precipitation falls precipitation data,

below normal levels for many years, causing the
deterioration of the hydrological and ecological balance.
Predicting the location, time, and duration of a drought
event is difficult. Drought differs from other natural
phenomena in the sense that it starts very slowly, develops

In this study, we aimed to develop models for predicting
drought events characterized by SPI values for Kayseri
(Tirkiye). We used Artificial Neural Networks (ANN), a
machine learning technique that is widely used for

*Corresponding author: fdadaser@erciyes.edu.tr

58


https://doi.org/10.52924/SNRZ2925
mailto:fdadaser@erciyes.edu.tr

Kilig et al.

predicting hydrologic and climatic variables. The input
variables for the prediction models include large-scale
global oscillation indices representing atmospheric
circulation patterns, such as the North Atlantic Oscillation
Index (NAOI), Mediterranean Oscillation Index (MOI),
and Arctic Oscillation Index (AOI). Prediction models were
developed to forecast the SP112 value, which is the SPI
value calculated based on 12-month data. Standard
statistical performance metrics were used to evaluate the
performances of the developed models.

2. MATERIALS AND METHODS
2.1 Data Used

This study used monthly precipitation data from 1980 to
2015 recorded at the meteorology station number 17196,
located in Kayseri. The precipitation data then were used to
calculate the SPI values. The SPI [2] was developed to
normalize the statistical distribution of precipitation data to
eliminate the differences resulting from nonstandard
distributions. To calculate the SPI, precipitation data are
first fitted to a gamma distribution. The gamma distribution
is preferred because precipitation data usually take positive
values and have an asymmetric distribution. This fitted
gamma distribution was then transformed into a normal
distribution using an equal probability transformation.
After transformation to a normal distribution, the SPI is
expressed as a z-score with zero mean and unit standard
deviation. SPI values above zero indicate above-average
precipitation, that is, wet periods, whereas SPI values below
zero reflect below-average precipitation, that is, dry
periods. The SPI allows meteorological drought analysis at
different time scales (3, 6, 12, 24, and 48 months). Because
the precipitation deficit gradually and variably affects
different water resources (e.g., streamflow and
groundwater), multiple SPI periods can be used to reflect
the changes in different water properties.

Studies conducted in Tirkiye have shown that analyzing
historical precipitation data, along with large-scale global
oscillation indices, is crucial for generating future climate
scenarios and predicting drought events [3, 4, 5, 6, 7, 8, 9,
10]. In this study, drought prediction was performed based
on SPI12 data and large-scale oscillation indices. The 12-
month Standardized Precipitation Index (SPI12) is a
meteorological drought indicator that is commonly used to
monitor  precipitation anomalies over 12-month
accumulation periods. It is considered to be a proxy
indicator for medium-term hydrological impacts, such as
reduced stream flow and reservoir storage.

To describe large-scale atmospheric events, the NAOI,
AOIl, and MOI, which were previously identified as the
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most influential indices of precipitation in Tirkiye by
Dadaser-Celik et al. [11] were considered. The NAOI can
be defined as the normalized pressure difference between a
station in the Azores and a station in Iceland. The AOI was
calculated by reflecting the daily 1000mb height anomalies
of the polar oscillation in the poleward direction by 20°K
on the loading pattern. The MOI was calculated as the
normalized pressure difference between Algiers (36.4°N,
3.1°E) and Cairo (30.1°N, 31.4°E) (MOI1), or between the
Northern Border of Gibraltar (36.1°N, 5.3°W) and Israel
(32.0°N, 34.5°E) Lod Airport (MOI2). Because MOII and
MOI2 show similar effects, only the MOI1 index was
considered in this study. The time series containing the
index data was obtained from the UK Climate Research
Unit and the US Climate Prediction Center.

2.2 Model Setup

The model used SPI12 as the output (dependent variable),
whereas the inputs (independent variables) included SP112,
NAOI, AOI, and MOI1 values from the preceding 3, 6, and
12 months (Table 1). In other words, the model inputs
consisted of historical values of SPI and climate indices
(NAOI, AOIl, and MOI1) to predict future SPI12
conditions.

A multi-layer perceptron ANN model with a single hidden
layer was selected. The model training used 70% of the data
and a scaled conjugate gradient backpropagation algorithm.
The remaining 15% of the data was used for testing, and the
final 15% was used for validation. The data used for the
training, testing, and validation were randomly selected.
The activation functions of the hidden layer (hyperbolic
tangent or sigmoid (S-shaped)) and the number of neurons
in the hidden layer were determined using a trial-and-error
method. Similarly, the activation functions of the output
layer (identity, softmax, hyperbolic tangent, or sigmoid)
were selected through trial and error. Additionally, models
were run using activation functions with 1-50 neurons in
the hidden layer, and the configuration that produced the
least error was selected for the study.

The performances of the models were evaluated by
calculating the Nash-Sutcliffe efficiency (NSE) coefficient,
Root Mean Square Error (RMSE), and Coefficient of
Determination (R?). The NSE coefficient typically ranges
between 0 and 1, with values closer to 1 indicating that the
model performance has acceptable accuracy. An NSE value
of 1 and/or close to 1 signifies that the success of the
analysis is high [12]. The R? values change between 0 and
1, and values closer to 1 indicate higher performance. For
the RMSE, values closer to zero were preferable.

Copyright © and. Published by Erciyes Energy Association
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Table 1. Models Inputs and Outputs

Model .
No Models Used in the Study
1 SPliy1 = f(SPI(t), SPlt_1), SPI;_3), SPI(t_3))
2 SPIt+1 = f(SPI(t),SPI(t_l),SPI(t_Z), SPI(t_3),NAO(t_1), NAO(t—Z)' NAO(t_g))
3 SPIt+1 = f(SPI(t), SPI(t_l), SPI(t—Z)' SPI(t_3),A0(t_1), AO(t—Z)' AO(t_3))
4 SPliyy = f(SPIy, SPIit—1y, SPI(t—32), SPI(t—3), MOI(s_1y, MOI(s—3), MOI (¢ _3))
5 SPl;y1 = f(SPI), SPIit—1), SPI(t—2), SPI(t—3), NAO(t_1), NAO(s—3), NAO(r_3, AO(t—1), AO(t—2), AO(—3))
6 SPIy1 = £(SPli,SPLs.1y, SPls.2), SPlir-3,NAO 1), NAO(+.2, NAO(r3, AOr1), AO(r.2, AO(1-3, MOl 1, MOI 1.5, MOI 1. 3))
7 SPI;y1 = f(SPI), SPIit—1), SPI(t—2), SPI(t—3), SPI(t—4y, SPI(t—5), SP1(—6))
8 SPlyy1= f(SPLy,SPlcr 1), SPlct-2, SPLt-3),SPlv-4), SPl-5), SPlir.6)) ,NAO(.1), NAO(1. 2, NAO(.3,NAO( 1.0, NAO(1-5), NAO(1.6)
9 SPl;y1 = F(SPI(y, SPIc—1), SPI(t—2), SPI(t—3), SP1(t—4), SPI(t—5), SPI(t—6), AO(t—1), AO(t—2), AO(t—3), AO(t—4y, AO(t—5), AO(t—))
10 | SPlyp1=f(SPly,SPliv1), SPIv-2), SPLt-3,SPLs-2y, SPLs.5), SPl.6),MOI .1y, MOl 1.3, MOl 1.3, MOl gy, MOI .5, MOl 1.))
11 5P]t+1: f(SP[([),SP](t_]), SP[([_Z), SP[([__g),SP[(t_‘;), SPI(t__;), SP[([_ﬁ),NAO(t_]), NAO(t_Z), NAO(t_3),NA0([_4), NAO(t_5), NAO(t_ﬁ), AO([—])/ AO([_Z), AO([_g),AO(t_4), AO(t__g), Ao(t_é))
12 5P]t+1 :f((SP[([),SP[(t_I), SP[([_Z), SP](t_g),SP[(t_éz), SP[(t_5), SP[([_ﬁ),NAO(t_]), NAO(t_Z), NAO(t_3),NA0(t_4), NAO(t_5), NAO(t_ﬁ), AO([—])/ AO([_Z), AO([__?), AO(H;), AO([__;), AO([_@, MO[(t_]),
MO[(t—Z)/ M01(,_3),M01(,_4), MO[(t—S)/ MO[(t—ﬁ))
13 | SPliyy = f(SPl(y, SPItt—1y, SPI(t—2), SPIt—3), SPI(t—4), SPI(t—5), SPIt—6), SPIct—7, SPI(t—g), SPI(t—0), SPI(t—10), SPI(t—11), SPI(t—12))
1a | SPlevs=FSPho,SPley, SPhc-2, SPl-3, 5Pl SPRe-5), SP1-6),SPh1-7),SPlc-8), SPlt-9) SPh1-10)SPk-11), SPe-12 NAO -1y, NAO(c-2, NAO(1-5,NAO(1-4), NAO(1-5,NAO 1.5,
NAO(;.7,NAO(.g), NAO(t.9), NAO(1.10),NAO .17, NAO(1-12)
15 | SPlers=1F(Plo,SPlc1), SPhe.s SPle-5SPhc-t), SPh-5), Pl SPle-rSPhc-8), SPU-9), SPl-10ySPK-11), SPl-12 A0, A2, AO(1-3)A0(1-t, A -5, AD1-0,A0 -7, A0 19, AO1-9),
AO+-10,40 11, AD(t-12))
16 | SPler1=1F(Plo,SPl-1), SPle-s, SPle-3,SPhc-t), SPl-5), SPlie-oSPhe-7 P SPRe-9y SPh1-10)SPK1-11), SP1-12,MOU -1y, MOK .2, MO, MOK 14, MOkr.55, MOl .,
MO, MOl g,MOI .9, MOl (.15, MOI .17, MOl 1)
17 SP[t+1: f(SP[(t),SP[(t_Z), SP[(t—Z)/ SP[(t_g),SPI([_‘;), SPI(t_Q, SP[(t_g),NAO(t_J), NA O(t-z)/ NAO([_3),NA0(t_4), NA 0([_5, NAO(t_ﬁ), NAO([_a,NAO(t_g), NAO(t_g), NAO(t_]”),NAO(t_II), NAO(t_JZ),
AO-1), AO .2, AO(+-3,A0 .4, AO(1-5, AO4-6,A0(+- 7,408, AO(t-9), AD1.10),A0 .11, AO(1.12))
SPley1 =1(SPLp,SPlt.1y, SPlit.2), SPlt-3,SPl .4y, SPlt.5), SPlit.6,NAO 1.1y, NAO(1.2, NAO 1.3, NAO 1.4y, NAO1.5), NAO1.5), NAO(t.7,NAO 1.5y, NAO(t.9), NAO (110, NAO 1.1, NAO(.12),
18 | AO(.1), A0, AO(r-3,40.00, AO-5), AO1-6),A0c 7,408, AOr-9), AOt-10)A0(-11), AO (.12, MOl (1, MOI 3y, MOl (5, MOI 4y, MOl _5), MOI(s—gy, MOL .7, MOl .gy, MOl 1),

MOKt-19 MO ¢-17), MOl1-12)
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3. RESULTS

3.1 Data Characteristics

The data used in this study consisted of precipitation data,
SPI112 values calculated from the precipitation data, and
large-scale circulation index data. The annual precipitation
and the resulting SP112 values for the 1980-2015 period for
the city of Kayseri are shown in Figs. 1 and 2, respectively.

The average annual precipitation in Kayseri for the period
1980-2015 was calculated as 406 mm. The lowest
precipitation in the study area occurred during summer,
whereas the highest precipitation levels were observed in
the spring and winter. The lowest annual average
precipitation occurred in 2001, and the highest in 1988.
August was the driest month, with an average monthly
precipitation of 6.7 mm. The highest precipitation occurred
in May, with an average of 57.5 mm.

The SPI12 values range from a minimum of -2.53 to a
maximum of 2.72. Dry periods occurred in the years 1981,
1983, 1985, 1990, 1995, 2001, 2002, 2004, 2005, 2006,
2009, and 2014, while wet periods were observed in the
years 1987, 1988, 1989, 1991, 1992, 1998, 1999, 2000,
2003, 2007, 2010, 2011, 2012, and 2015.
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Fig. 1. Annual Precipitation between 1980 and 2015
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Fig. 2. SP112 values for the 1981-2015 period

3.2 SPI12 Forecasting Using Data from the Past 3
Months

In the first part of the study, SP112 values were predicted
using the SP112, NAOI, AOI, and MOI1 values from the
past 3 months (Models 1 to 6 in Table 1). The results
obtained from predicting SP112 with different inputs are
shown in Figs. 3 and 4. The calculated NSE, RMSE, and R?
values are presented in Table 2. When data from the past
three months were used (Models 1 to 6), Models 3 and 6
were the best-performing models. In Model 3, SP112 values
were predicted using the SPI12 and AOI values in the
previous one, two, and three months. In Model-6, SP112
values were predicted using SP112, NAOI, AOI, and MOI1
values from the last 1, 2, and 3 months. The NSE, R2, and
RMSE values in both models were 0.89, 0.89, and 0.33,
respectively. The best model performance was obtained
when the hyperbolic tangent was selected as the activation
function in the hidden layer and the identity function was
used in the output layer.

Table 2. SP112 Prediction Performance Based on Past 3 Months' Data

TRAIN TEST VALIDATION ALL
Model No |NSE|[RMSE| R? |NSE|RMSE| R? |NSE|RMSE| R? | NSE |RMSE | R?
MODEL1|091| 0.34 | 0.88 |091| 0.19 |0.82|0.90| 0.17 | 0.90 | 0.88 | 0.34 |0.89
MODEL 2090 0.35 | 0.87 |090| 0.21 |0.80|0.90| 0.17 |0.89 | 0.87 | 0.36 |0.88
MODEL3|091| 0.33 | 0.89 |091| 0.19 |0.81]|092| 0.15 |0.91| 0.89 | 0.33 |0.89
MODEL 4091 | 0.34 | 0.88 |091| 0.19 |0.81|091| 0.16 | 0.90 | 0.88 | 0.35 |0.88
MODELS5|091| 0.34 | 0.88 |090| 0.20 |0.79|/091| 0.16 | 0.90 | 0.88 | 0.35 |0.88
MODEL6 {091 0.33 | 0.88 |091| 0.20 |0.81|0.92| 0.15 | 0.92| 0.89 | 0.33 |0.89

Copyright © and. Published by Erciyes Energy Association
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Fig. 3. Observed and Predicted SP112 Values Based on Past 3 Months’ SP112, NAOI, AOI, and MOI1 Data
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Fig. 4. Correlation of Predicted and Observed SP112 Values Based on Past 3 Months’ SPI112, NAOI, AOI, and MOI1 Data

3.3. SPI12 Forecasting Using Data from the Past 6
Months

In the second part of the study, SP112 values were estimated
using the SP112, NAOI, AOI, and MOI1 values of the
previous 6 months (Models 7 to 12). Fig. 5 and Fig. 6
present the results obtained by estimating SP112 with
different inputs. The correlation analyses of the calculated
NSE, RMSE, and R? values are presented in Table 3.

When data from the past six months was used as input, the
models that provided the best results were Models 9 and 12.

62

In Model 9, SPI12 values were estimated using SP112 and
AOI values from the past six months. Model 12 shows the
SPI12, NAOI, AOI, and MOI1 values from the previous 6.
In Model 9, the NSE value was 0.90, the R? value was 0.90,
and the RMSE value was 0.33, whereas in Model 12, the
NSE value was 0.91. The R? value was 0.92, and the RMSE
value was 0.30. The best model performance was attained
when the hyperbolic tangent was selected as the activation
function in the hidden layer and identity was used in the
output layer.
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Table 3. SP112 Estimated Performance Evaluation Based on Past 6 Months' Data
TRAIN TEST VALIDATION ALL
Model No
NSE|RMSE| R? |NSE|RMSE| R? | NSE | RMSE | R? NSE | RMSE | R?
MODEL7 |091| 034 | 0.88 [092| 0.19 |0.83| 091 | 0.16 | 0.90 | 0.89 0.33 |0.89
MODEL 8 |0.92| 0.32 0.89 (0.93| 0.18 |0.85|0.92 | 0.16 | 0.90 | 0.88 0.32 | 0.87
MODEL9 |[0.92| 0.31 0.90 (091 0.20 |0.81|0.92 | 0.15 | 0.92 | 0.90 0.33 |0.90
MODEL 10 |091| 0.34 | 0.88 |092| 0.19 |0.83| 091 | 0.16 | 0.90 | 0.89 0.34 |0.89
MODEL 11 [ 0.86| 0.42 0.82 |0.89| 0.22 |0.78| 0.87 | 0.20 | 0.86 | 0.83 0.41 |0.83
MODEL 12 {0.93| 0.3 0.90 [0.93| 0.17 |0.86| 095 | 0.12 | 0.94 | 0.91 0.30 | 0.92
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Fig. 5. Observed and Predicted SP112 Values Based on Past 6 Months® SP112, NAOI, AOI, and MOI1 Data
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Fig. 6. Correlation of Predicted and Observed SP112 Values Based on Past 6 Months® SP112, NAOI, AOI, and MOI1 Data
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3.4. SPI12 Forecasting Using Data from the Past 12
Months

In the final part of the study. SP112 values were predicted
using SP112, NAOI, AOI, and MOI1 data from the past 12
months (Models 13 to 18 in Table 1). The results obtained
from predicting SP112 with different inputs are shown in
Figures 7 and 8. The calculated NSE, RMSE, and R2 values
are presented in Table 4.

Energy, Environment and Storage (2025) 05-02:58-66

The best-performing models were Models 14 and 15, when
data from the past 12 months was used. In Model 14, SP112
values were predicted using SP112 and NAOI12 values
from the past 12 months. In Model 15, SPI12 values were
predicted using SP112 and NAOI. MOI and AOI values
over the past 12 months. In Model 14, the NSE value was
0.91, the R? value was 0.91 and the RMSE value was 0.31,
while in Model 15. The NSE, R?, and RMSE values were
0.90, 0.89, and 0.33, respectively.

Table 4. SP112 Estimated Performance Evaluation Based on Past 12 Months' Data

TRAIN TEST VALIDATION ALL
NSE [RMSE| R? |NSE|RMSE| R?> | NSE | RMSE | R? NSE | RMSE | R?
MODEL 13 [ 0.92| 0.32 0.89 |[092| 0.19 |{0.83| 091 | 0.18 | 0.90 | 0.89 0.33 |0.89
MODEL 14 {0.93| 0.30 091 |092| 0.19 |{0.84]| 093 | 0.15 | 092 | 0.91 0.31 |0.91
MODEL 15 {091 | 0.34 0.88 |0.93| 0.18 |{0.85|0.93 | 0.15 | 092 | 0.90 0.33 |0.89
MODEL 16 {091 | 0.34 0.88 |0.92| 0.19 |0.83| 089 | 0.18 | 0.88 | 0.88 0.34 |0.88
MODEL 17 {0.90| 0.35 0.87 |091| 0.20 |{0.83| 091 | 0.16 | 0.90 | 0.88 0.35 |0.88
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4. DISCUSSIONS AND CONCLUSION

This study aimed to develop and apply robust and accurate
models for drought prediction. Given the complexity and
challenges of drought forecasting, it is essential to employ
various approaches to capture the nonlinear relationships
between drought and meteorological variables. Numerous
climatic factors contribute to the occurrence of droughts.
The objective was to identify the most effective model or
technique for predicting drought under future climate
scenarios.

This study developed an ANN model to predict the
Standardized Precipitation Index at a 12-month scale
(SPI12) using large-scale global climate indices. An
Artificial Neural Network (ANN) technique was employed
as the modeling approach. The model performance was
evaluated using RMSE, R?, and NSE metrics. In the
developed models, SPI12 was used as the dependent
variable, while the independent variables included lagged
values of SP112, AOI, NAOI, and MOI1 from the preceding
3, 6, and 12 months.

As a result of the modelling studies, the RMSE values of
the SP112 prediction models ranged from 0.30 to 0.41. The
R? values ranged from 0.83 to 0.92, and the NSE values
ranged from 0.83 to 0.91. The best performance was
achieved by Model 12, where the RMSE, R? and NSE
values were 0.30, 0.92, and 0.91, respectively. This result
shows that the best prediction performance was obtained
when SPI12, NAOI, AOI, and MOI1 values from the
preceding six months were used together.

In this study, the ANN method was chosen as the modeling
technique. An ANN is a data-driven model that can be used
to model complex systems. This method has been used in
many studies for SPI prediction [e.g., 13, 14,15]. In this
study, using precipitation data, SP112 values, and large-
scale oscillation index data as inputs, the model predicted
the SPI12 value with an R? value of 0.92 and an RMSE
value of 0.30. Similarly, Morid et al. [17] developed a
model based on SPI inputs and index values and achieved
an R? in the range of 0.66-0.79 based on data from the

preceding 6 months. Rezaeian-Zadeh [18], incorporating
antecedent SPI, precipitation, and both the North Atlantic
Oscillation and Southern Oscillation Index, achieved the
highest forecasting performance, with an R? of 0.92 and an
RMSE of 0.35 for 1-month lead time predictions during the
validation phase. The performance metric values obtained
in this study closely approximate those reported in the
literature in magnitude and are at an acceptable level.

This study revealed that large-scale global oscillation
indices influence precipitation patterns in Kayseri, and in
this sense, the findings agreed with those of the previous
studies. The effects of global oscillation indices on
precipitation and drought in Tiirkiye have been
demonstrated in previous studies [3, 4, 5, 6, 7, 8, 9, 10, 11]
Karabork et al. [4] analyzed the variability of climate
variables in Tiirkiye based on the Southern Oscillation
Index (SOI) and NAOI and showed that NAOI affects
precipitation and runoff during winter months. Topuz et al.
[10] analyzed annual and seasonal precipitation data from
29 stations in Tiirkiye between 1955 and 2013. The effect
of atmospheric circulation on precipitation variability in
Tiirkiye was investigated using NAOI, MCI, MOI, EMPI,
and NCPI. As a result, it was found that the MOI better
explained annual precipitation variability in Tirkiye than
the other indices. Duzenli et al. [9] showed in their study
that the NAOI and AOI affect the dry days in all regions of
Tiirkiye, except for the east and northeast during the winter
months. Furthermore, when comparing the effects of large-
scale global oscillation indices on precipitation extremes
and dry days, it was concluded that large-scale global
indices significantly impacted the number of dry days.
Dadaser-Celik et al. [11], using data from 238
meteorological stations in Tiirkiye, also showed that large-
scale global oscillation indices significantly influence
Tirkiye’s precipitation patterns, and these effects are
observed both annually and seasonally.

This study distinguished the potential of predicting SPI
using climate indices, precipitation data, and artificial
intelligence techniques. It was suggested that new models

Copyright © and. Published by Erciyes Energy Association

65



Kilig et al.

and scenarios could be developed by adding new data in
future studies, and the performance indicators could be
improved using such algorithms as deep learning.
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