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ABSTRACT. Drought is a complex natural phenomenon resulting from prolonged periods of below-average precipitation. 

Its gradual development over large areas makes it challenging to accurately determine its onset, duration, and overall impact. 

This study developed an artificial neural network (ANN) method-based model to predict the standard precipitation index 

(SPI), an index commonly used to determine drought severity. SPI12, which reflects a meteorological drought indicator to 

monitor precipitation anomalies over 12-month accumulation periods, was estimated based on the artificial neural network 

(ANN) method using monthly precipitation data recorded in the 1980-2015 period for Kayseri. The North Atlantic Oscillation 

Index (NAOI), Mediterranean Oscillation Index (MOI), and Arctic Oscillation Index (AOI), which represent large-scale 

global cycles, were used as input variables in the models. A multilayer perceptron-type ANN model with a single hidden 

layer was chosen. The model training used 70% of the data and a scaled conjugate gradient backpropagation algorithm. The 

remaining 30% of the data were used for model testing and control. The activation functions of the ANN model and the 

number of neurons in the hidden layer were determined using the trial-and-error method. The performances of the models 

were evaluated using the mean Nash-Sutcliffe coefficient of efficiency (NSE), root mean square error (RMSE), and 

coefficient of determination (R2) of agreement between the estimated and observed SPI12 values. This study demonstrated 

that drought conditions can be successfully predicted 3, 6, and 12 months in advance using indices reflecting large-scale 

global climate anomalies. 
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1. INTRODUCTION 

In recent years, due to changing climate characteristics, 

rapid development of the energy, industry, and agriculture 

sectors, and population growth, water demand has been 

steadily increasing, and water shortages are becoming more 

frequent. The frequency and severity of drought events are 

changing in many regions of the world. Understanding 

these changes and predicting future conditions are critical 

for preventing climate-related disasters. 

Drought is a disaster that occurs when precipitation falls 

below normal levels for many years, causing the 

deterioration of the hydrological and ecological balance. 

Predicting the location, time, and duration of a drought 

event is difficult. Drought differs from other natural 

phenomena in the sense that it starts very slowly, develops 

over months or even years, and affects vast areas. It is also 

challenging to determine the beginning, end, effects, and 

consequences of droughts. 

Various indices have been developed to characterize and 

monitor drought events. Each of these indices captures 

different aspects of drought, depending on data availability 

and the type of drought being studied [1]. Among these, the 

Standardized Precipitation Index (SPI) is one of the most 

widely used because of its simplicity, applicability over 

multiple timescales, and calculability based only on 

precipitation data. 

In this study, we aimed to develop models for predicting 

drought events characterized by SPI values for Kayseri 

(Türkiye). We used Artificial Neural Networks (ANN), a 

machine learning technique that is widely used for 
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predicting hydrologic and climatic variables. The input 

variables for the prediction models include large-scale 

global oscillation indices representing atmospheric 

circulation patterns, such as the North Atlantic Oscillation 

Index (NAOI), Mediterranean Oscillation Index (MOI), 

and Arctic Oscillation Index (AOI). Prediction models were 

developed to forecast the SPI12 value, which is the SPI 

value calculated based on 12-month data. Standard 

statistical performance metrics were used to evaluate the 

performances of the developed models. 

 

2. MATERIALS AND METHODS 

2.1 Data Used 

This study used monthly precipitation data from 1980 to 

2015 recorded at the meteorology station number 17196, 

located in Kayseri. The precipitation data then were used to 

calculate the SPI values. The SPI [2] was developed to 

normalize the statistical distribution of precipitation data to 

eliminate the differences resulting from nonstandard 

distributions. To calculate the SPI, precipitation data are 

first fitted to a gamma distribution. The gamma distribution 

is preferred because precipitation data usually take positive 

values and have an asymmetric distribution. This fitted 

gamma distribution was then transformed into a normal 

distribution using an equal probability transformation. 

After transformation to a normal distribution, the SPI is 

expressed as a z-score with zero mean and unit standard 

deviation. SPI values above zero indicate above-average 

precipitation, that is, wet periods, whereas SPI values below 

zero reflect below-average precipitation, that is, dry 

periods. The SPI allows meteorological drought analysis at 

different time scales (3, 6, 12, 24, and 48 months). Because 

the precipitation deficit gradually and variably affects 

different water resources (e.g., streamflow and 

groundwater), multiple SPI periods can be used to reflect 

the changes in different water properties. 

Studies conducted in Türkiye have shown that analyzing 

historical precipitation data, along with large-scale global 

oscillation indices, is crucial for generating future climate 

scenarios and predicting drought events [3, 4, 5, 6, 7, 8, 9, 

10]. In this study, drought prediction was performed based 

on SPI12 data and large-scale oscillation indices. The 12-

month Standardized Precipitation Index (SPI12) is a 

meteorological drought indicator that is commonly used to 

monitor precipitation anomalies over 12-month 

accumulation periods. It is considered to be a proxy 

indicator for medium-term hydrological impacts, such as 

reduced stream flow and reservoir storage.  

To describe large-scale atmospheric events, the NAOI, 

AOI, and MOI, which were previously identified as the 

most influential indices of precipitation in Türkiye by 

Dadaser-Celik et al. [11] were considered. The NAOI can 

be defined as the normalized pressure difference between a 

station in the Azores and a station in Iceland. The AOI was 

calculated by reflecting the daily 1000mb height anomalies 

of the polar oscillation in the poleward direction by 20°K 

on the loading pattern. The MOI was calculated as the 

normalized pressure difference between Algiers (36.4°N, 

3.1°E) and Cairo (30.1°N, 31.4°E) (MOI1), or between the 

Northern Border of Gibraltar (36.1°N, 5.3°W) and Israel 

(32.0°N, 34.5°E) Lod Airport (MOI2). Because MOI1 and 

MOI2 show similar effects, only the MOI1 index was 

considered in this study. The time series containing the 

index data was obtained from the UK Climate Research 

Unit and the US Climate Prediction Center. 

 

2.2 Model Setup 

The model used SPI12 as the output (dependent variable), 

whereas the inputs (independent variables) included SPI12, 

NAOI, AOI, and MOI1 values from the preceding 3, 6, and 

12 months (Table 1). In other words, the model inputs 

consisted of historical values of SPI and climate indices 

(NAOI, AOI, and MOI1) to predict future SPI12 

conditions.  

A multi-layer perceptron ANN model with a single hidden 

layer was selected. The model training used 70% of the data 

and a scaled conjugate gradient backpropagation algorithm. 

The remaining 15% of the data was used for testing, and the 

final 15% was used for validation. The data used for the 

training, testing, and validation were randomly selected. 

The activation functions of the hidden layer (hyperbolic 

tangent or sigmoid (S-shaped)) and the number of neurons 

in the hidden layer were determined using a trial-and-error 

method. Similarly, the activation functions of the output 

layer (identity, softmax, hyperbolic tangent, or sigmoid) 

were selected through trial and error. Additionally, models 

were run using activation functions with 1–50 neurons in 

the hidden layer, and the configuration that produced the 

least error was selected for the study. 

The performances of the models were evaluated by 

calculating the Nash-Sutcliffe efficiency (NSE) coefficient, 

Root Mean Square Error (RMSE), and Coefficient of 

Determination (R²). The NSE coefficient typically ranges 

between 0 and 1, with values closer to 1 indicating that the 

model performance has acceptable accuracy. An NSE value 

of 1 and/or close to 1 signifies that the success of the 

analysis is high [12]. The R2 values change between 0 and 

1, and values closer to 1 indicate higher performance. For 

the RMSE, values closer to zero were preferable. 
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Table 1. Models Inputs and Outputs 

Model 

No Models Used in the Study 

1 𝑆𝑃𝐼𝑡+1 =  𝑓(𝑆𝑃𝐼(𝑡), 𝑆𝑃𝐼(𝑡−1), 𝑆𝑃𝐼(𝑡−2), 𝑆𝑃𝐼(𝑡−3))   

2 𝑆𝑃𝐼𝑡+1 =  𝑓(𝑆𝑃𝐼(𝑡), 𝑆𝑃𝐼(𝑡−1), 𝑆𝑃𝐼(𝑡−2), 𝑆𝑃𝐼(𝑡−3), 𝑁𝐴𝑂(𝑡−1), 𝑁𝐴𝑂(𝑡−2), 𝑁𝐴𝑂(𝑡−3))   

3 𝑆𝑃𝐼𝑡+1 =  𝑓(𝑆𝑃𝐼(𝑡), 𝑆𝑃𝐼(𝑡−1), 𝑆𝑃𝐼(𝑡−2), 𝑆𝑃𝐼(𝑡−3), 𝐴𝑂(𝑡−1), 𝐴𝑂(𝑡−2), 𝐴𝑂(𝑡−3))   

4 𝑆𝑃𝐼𝑡+1 =  𝑓(𝑆𝑃𝐼(𝑡), 𝑆𝑃𝐼(𝑡−1), 𝑆𝑃𝐼(𝑡−2), 𝑆𝑃𝐼(𝑡−3), 𝑀𝑂𝐼(𝑡−1), 𝑀𝑂𝐼(𝑡−2), 𝑀𝑂𝐼(𝑡−3))  

5 𝑆𝑃𝐼𝑡+1 =  𝑓(𝑆𝑃𝐼(𝑡), 𝑆𝑃𝐼(𝑡−1), 𝑆𝑃𝐼(𝑡−2), 𝑆𝑃𝐼(𝑡−3), 𝑁𝐴𝑂(𝑡−1), 𝑁𝐴𝑂(𝑡−2), 𝑁𝐴𝑂(𝑡−3), 𝐴𝑂(𝑡−1), 𝐴𝑂(𝑡−2), 𝐴𝑂(𝑡−3)) 

6 𝑆𝑃𝐼𝑡+1 = f (SPI(t),SPI(t-1), SPI(t-2), SPI(t-3),NAO(t-1), NAO(t-2), NAO(t-3), AO(t-1), AO(t-2), AO(t-3),MOI(t-1), MOI(t-2), MOI(t-3))  

7 𝑆𝑃𝐼𝑡+1 =  𝑓(𝑆𝑃𝐼(𝑡), 𝑆𝑃𝐼(𝑡−1), 𝑆𝑃𝐼(𝑡−2), 𝑆𝑃𝐼(𝑡−3), 𝑆𝑃𝐼(𝑡−4), 𝑆𝑃𝐼(𝑡−5), 𝑆𝑃𝐼(𝑡−6))   

8 SPIt+1= f(SPI(t),SPI(t-1), SPI(t-2), SPI(t-3),SPI(t-4), SPI(t-5), SPI(t-6)) ,NAO(t-1), NAO(t-2), NAO(t-3),NAO(t-4), NAO(t-5), NAO(t-6))   

9 𝑆𝑃𝐼𝑡+1 =  f (𝑆𝑃𝐼(𝑡), 𝑆𝑃𝐼(𝑡−1), 𝑆𝑃𝐼(𝑡−2), 𝑆𝑃𝐼(𝑡−3), 𝑆𝑃𝐼(𝑡−4), 𝑆𝑃𝐼(𝑡−5), 𝑆𝑃𝐼(𝑡−6), 𝐴𝑂(𝑡−1), 𝐴𝑂(𝑡−2), 𝐴𝑂(𝑡−3), 𝐴𝑂(𝑡−4), 𝐴𝑂(𝑡−5), 𝐴𝑂(𝑡−6))   

10 SPIt+1= f (SPI(t),SPI(t-1), SPI(t-2), SPI(t-3),SPI(t-4), SPI(t-5), SPI(t-6),MOI(t-1), MOI(t-2), MOI(t-3),MOI(t-4), MOI(t-5), MOI(t-6))  

11 SPIt+1= f(SPI(t),SPI(t-1), SPI(t-2), SPI(t-3),SPI(t-4), SPI(t-5), SPI(t-6),NAO(t-1), NAO(t-2), NAO(t-3),NAO(t-4), NAO(t-5), NAO(t-6), AO(t-1), AO(t-2), AO(t-3),AO(t-4), AO(t-5), AO(t-6)) 

12 
SPIt+1=f((SPI(t),SPI(t-1), SPI(t-2), SPI(t-3),SPI(t-4), SPI(t-5), SPI(t-6),NAO(t-1), NAO(t-2), NAO(t-3),NAO(t-4), NAO(t-5), NAO(t-6), AO(t-1), AO(t-2), AO(t-3), AO(t-4), AO(t-5), AO(t-6), MOI(t-1), 
MOI(t-2), MOI(t-3),MOI(t-4), MOI(t-5), MOI(t-6))  

13 𝑆𝑃𝐼𝑡+1 =  𝑓(𝑆𝑃𝐼(𝑡), 𝑆𝑃𝐼(𝑡−1), 𝑆𝑃𝐼(𝑡−2), 𝑆𝑃𝐼(𝑡−3), 𝑆𝑃𝐼(𝑡−4), 𝑆𝑃𝐼(𝑡−5), 𝑆𝑃𝐼(𝑡−6), 𝑆𝑃𝐼(𝑡−7), 𝑆𝑃𝐼(𝑡−8), 𝑆𝑃𝐼(𝑡−9), 𝑆𝑃𝐼(𝑡−10), 𝑆𝑃𝐼(𝑡−11), 𝑆𝑃𝐼(𝑡−12))   

14 
SPIt+1= f(SPI(t),SPI(t-1), SPI(t-2), SPI(t-3),SPI(t-4), SPI(t-5), SPI(t-6),SPI(t-7),SPI(t-8), SPI(t-9), SPI(t-10),SPI(t-11), SPI(t-12) ,NAO(t-1), NAO(t-2), NAO(t-3),NAO(t-4), NAO(t-5),NAO(t-6), 
NAO(t-7),NAO(t-8), NAO(t-9), NAO(t-10),NAO(t-11), NAO(t-12)) 

15 
SPIt+1= f(SPI(t),SPI(t-1), SPI(t-2), SPI(t-3),SPI(t-4), SPI(t-5), SPI(t-6), SPI(t-7),SPI(t-8), SPI(t-9), SPI(t-10),SPI(t-11), SPI(t-12), AO(t-1), AO(t-2), AO(t-3),AO(t-4), AO(t-5), AO(t-6),AO(t-7),AO(t-8), AO(t-9), 
AO(t-10),AO(t-11), AO(t-12))   

16 
SPIt+1= f(SPI(t),SPI(t-1), SPI(t-2), SPI(t-3),SPI(t-4), SPI(t-5), SPI(t-6),SPI(t-7),SPI(t-8), SPI(t-9), SPI(t-10),SPI(t-11), SPI(t-12),MOI(t-1), MOI(t-2), MOI(t-3),MOI(t-4), MOI(t-5), MOI(t-6), 
MOI(t-7),MOI(t-8),MOI(t-9), MOI(t-10),MOI(t-11), MOI(t-12)) 

17 
SPIt+1= f(SPI(t),SPI(t-1), SPI(t-2), SPI(t-3),SPI(t-4), SPI(t-5), SPI(t-6),NAO(t-1), NAO(t-2), NAO(t-3),NAO(t-4), NAO(t-5), NAO(t-6), NAO(t-7),NAO(t-8), NAO(t-9), NAO(t-10),NAO(t-11), NAO(t-12), 
AO(t-1), AO(t-2), AO(t-3),AO(t-4), AO(t-5), AO(t-6),AO(t-7),AO(t-8), AO(t-9), AO(t-10),AO(t-11), AO(t-12))  

18 

SPIt+1=f(SPI(t),SPI(t-1), SPI(t-2), SPI(t-3),SPI(t-4), SPI(t-5), SPI(t-6),NAO(t-1), NAO(t-2), NAO(t-3),NAO(t-4), NAO(t-5), NAO(t-6), NAO(t-7),NAO(t-8), NAO(t-9), NAO(t-10),NAO(t-11), NAO(t-12), 
AO(t-1), AO(t-2), AO(t-3),AO(t-4), AO(t-5), AO(t-6),AO(t-7),AO(t-8), AO(t-9), AO(t-10),AO(t-11), AO(t-12), 𝑀𝑂𝐼(𝑡−1), 𝑀𝑂𝐼(𝑡−2), 𝑀𝑂𝐼(𝑡−3), 𝑀𝑂𝐼(𝑡−4), 𝑀𝑂𝐼(𝑡−5), 𝑀𝑂𝐼(𝑡−6), MOI(t-7),MOI(t-8), MOI(t-9), 
MOI(t-10),MOI(t-11), MOI(t-12))  
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3. RESULTS  

3.1 Data Characteristics 

 

The data used in this study consisted of precipitation data, 

SPI12 values calculated from the precipitation data, and 

large-scale circulation index data. The annual precipitation 

and the resulting SPI12 values for the 1980-2015 period for 

the city of Kayseri are shown in Figs. 1 and 2, respectively. 

The average annual precipitation in Kayseri for the period 

1980-2015 was calculated as 406 mm. The lowest 

precipitation in the study area occurred during summer, 

whereas the highest precipitation levels were observed in 

the spring and winter. The lowest annual average 

precipitation occurred in 2001, and the highest in 1988. 

August was the driest month, with an average monthly 

precipitation of 6.7 mm. The highest precipitation occurred 

in May, with an average of 57.5 mm. 

The SPI12 values range from a minimum of -2.53 to a 

maximum of 2.72. Dry periods occurred in the years 1981, 

1983, 1985, 1990, 1995, 2001, 2002, 2004, 2005, 2006, 

2009, and 2014, while wet periods were observed in the 

years 1987, 1988, 1989, 1991, 1992, 1998, 1999, 2000, 

2003, 2007, 2010, 2011, 2012, and 2015. 

 

Fig. 1. Annual Precipitation between 1980 and 2015 

 

Fig. 2. SPI12 values for the 1981-2015 period 

 

3.2 SPI12 Forecasting Using Data from the Past 3 

Months 

 

In the first part of the study, SPI12 values were predicted 

using the SPI12, NAOI, AOI, and MOI1 values from the 

past 3 months (Models 1 to 6 in Table 1). The results 

obtained from predicting SPI12 with different inputs are 

shown in Figs. 3 and 4. The calculated NSE, RMSE, and R2 

values are presented in Table 2. When data from the past 

three months were used (Models 1 to 6), Models 3 and 6 

were the best-performing models. In Model 3, SPI12 values 

were predicted using the SPI12 and AOI values in the 

previous one, two, and three months. In Model-6, SPI12 

values were predicted using SPI12, NAOI, AOI, and MOI1 

values from the last 1, 2, and 3 months. The NSE, R2, and 

RMSE values in both models were 0.89, 0.89, and 0.33, 

respectively. The best model performance was obtained 

when the hyperbolic tangent was selected as the activation 

function in the hidden layer and the identity function was 

used in the output layer. 

 

 

Table 2. SPI12 Prediction Performance Based on Past 3 Months' Data 

Model No 

TRAIN TEST VALIDATION ALL 

NSE RMSE R2 NSE RMSE R2 NSE RMSE R2 NSE RMSE R2 

MODEL 1 0.91 0.34 0.88 0.91 0.19 0.82 0.90 0.17 0.90 0.88 0.34 0.89 

MODEL 2 0.90 0.35 0.87 0.90 0.21 0.80 0.90 0.17 0.89 0.87 0.36 0.88 

MODEL 3 0.91 0.33 0.89 0.91 0.19 0.81 0.92 0.15 0.91 0.89 0.33 0.89 

MODEL 4 0.91 0.34 0.88 0.91 0.19 0.81 0.91 0.16 0.90 0.88 0.35 0.88 

MODEL 5 0.91 0.34 0.88 0.90 0.20 0.79 0.91 0.16 0.90 0.88 0.35 0.88 

MODEL 6 0.91 0.33 0.88 0.91 0.20 0.81 0.92 0.15 0.92 0.89 0.33 0.89 
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Fig. 3. Observed and Predicted SPI12 Values Based on Past 3 Months’ SPI12, NAOI, AOI, and MOI1 Data 

 

 

Fig. 4. Correlation of Predicted and Observed SPI12 Values Based on Past 3 Months’ SPI12, NAOI, AOI, and MOI1 Data 

 

3.3. SPI12 Forecasting Using Data from the Past 6 

Months 

 

In the second part of the study, SPI12 values were estimated 

using the SPI12, NAOI, AOI, and MOI1 values of the 

previous 6 months (Models 7 to 12). Fig. 5 and Fig. 6 

present the results obtained by estimating SPI12 with 

different inputs. The correlation analyses of the calculated 

NSE, RMSE, and R2 values are presented in Table 3. 

When data from the past six months was used as input, the 

models that provided the best results were Models 9 and 12. 

In Model 9, SPI12 values were estimated using SPI12 and 

AOI values from the past six months. Model 12 shows the 

SPI12, NAOI, AOI, and MOI1 values from the previous 6. 

In Model 9, the NSE value was 0.90, the R2 value was 0.90, 

and the RMSE value was 0.33, whereas in Model 12, the 

NSE value was 0.91. The R2 value was 0.92, and the RMSE 

value was 0.30. The best model performance was attained 

when the hyperbolic tangent was selected as the activation 

function in the hidden layer and identity was used in the 

output layer.
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Table 3. SPI12 Estimated Performance Evaluation Based on Past 6 Months' Data 

Model No 
TRAIN TEST VALIDATION ALL 

NSE RMSE R2 NSE RMSE R2 NSE RMSE R2 NSE RMSE R2 

MODEL 7 0.91 0.34 0.88 0.92 0.19 0.83 0.91 0.16 0.90 0.89 0.33 0.89 

MODEL 8 0.92 0.32 0.89 0.93 0.18 0.85 0.92 0.16 0.90 0.88 0.32 0.87 

MODEL 9 0.92 0.31 0.90 0.91 0.20 0.81 0.92 0.15 0.92 0.90 0.33 0.90 

MODEL 10 0.91 0.34 0.88 0.92 0.19 0.83 0.91 0.16 0.90 0.89 0.34 0.89 

MODEL 11 0.86 0.42 0.82 0.89 0.22 0.78 0.87 0.20 0.86 0.83 0.41 0.83 

MODEL 12 0.93 0.3 0.90 0.93 0.17 0.86 0.95 0.12 0.94 0.91 0.30 0.92 

 

 

Fig. 5. Observed and Predicted SPI12 Values Based on Past 6 Months’ SPI12, NAOI, AOI, and MOI1 Data 

 

 

Fig. 6. Correlation of Predicted and Observed SPI12 Values Based on Past 6 Months’ SPI12, NAOI, AOI, and MOI1 Data
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3.4. SPI12 Forecasting Using Data from the Past 12 

Months 

In the final part of the study. SPI12 values were predicted 

using SPI12, NAOI, AOI, and MOI1 data from the past 12 

months (Models 13 to 18 in Table 1). The results obtained 

from predicting SPI12 with different inputs are shown in 

Figures 7 and 8. The calculated NSE, RMSE, and R2 values 

are presented in Table 4. 

 

The best-performing models were Models 14 and 15, when 

data from the past 12 months was used. In Model 14, SPI12 

values were predicted using SPI12 and NAOI12 values 

from the past 12 months. In Model 15, SPI12 values were 

predicted using SPI12 and NAOI. MOI and AOI values 

over the past 12 months. In Model 14, the NSE value was 

0.91, the R2 value was 0.91 and the RMSE value was 0.31, 

while in Model 15. The NSE, R2, and RMSE values were 

0.90, 0.89, and 0.33, respectively. 

 

Table 4. SPI12 Estimated Performance Evaluation Based on Past 12 Months' Data 

 TRAIN TEST VALIDATION ALL 

 NSE RMSE R2 NSE RMSE R2 NSE RMSE R2 NSE RMSE R2 

MODEL 13 0.92 0.32 0.89 0.92 0.19 0.83 0.91 0.18 0.90 0.89 0.33 0.89 

MODEL 14 0.93 0.30 0.91 0.92 0.19 0.84 0.93 0.15 0.92 0.91 0.31 0.91 

MODEL 15 0.91 0.34 0.88 0.93 0.18 0.85 0.93 0.15 0.92 0.90 0.33 0.89 

MODEL 16 0.91 0.34 0.88 0.92 0.19 0.83 0.89 0.18 0.88 0.88 0.34 0.88 

MODEL 17 0.90 0.35 0.87 0.91 0.20 0.83 0.91 0.16 0.90 0.88 0.35 0.88 

MODEL 18 0.89 0.37 0.85 0.91 0.19 0.82 0.90 0.17 0.89 0.87 0.37 0.87 

 

 

Fig. 7. Observed and Predicted SPI12 Values Based on Past 12 Months’ SPI12, NAOI, AOI, and MOI1 Data 
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Fig. 8. Correlation of Predicted and Observed SPI12 Values Based on Past 12 Months’ SPI12, NAOI, AOI, and MOI1 Data 

 

4. DISCUSSIONS AND CONCLUSION 

This study aimed to develop and apply robust and accurate 

models for drought prediction. Given the complexity and 

challenges of drought forecasting, it is essential to employ 

various approaches to capture the nonlinear relationships 

between drought and meteorological variables. Numerous 

climatic factors contribute to the occurrence of droughts. 

The objective was to identify the most effective model or 

technique for predicting drought under future climate 

scenarios. 

This study developed an ANN model to predict the 

Standardized Precipitation Index at a 12-month scale 

(SPI12) using large-scale global climate indices. An 

Artificial Neural Network (ANN) technique was employed 

as the modeling approach. The model performance was 

evaluated using RMSE, R², and NSE metrics. In the 

developed models, SPI12 was used as the dependent 

variable, while the independent variables included lagged 

values of SPI12, AOI, NAOI, and MOI1 from the preceding 

3, 6, and 12 months. 

As a result of the modelling studies, the RMSE values of 

the SPI12 prediction models ranged from 0.30 to 0.41. The 

R2 values ranged from 0.83 to 0.92, and the NSE values 

ranged from 0.83 to 0.91. The best performance was 

achieved by Model 12, where the RMSE, R2, and NSE 

values were 0.30, 0.92, and 0.91, respectively. This result 

shows that the best prediction performance was obtained 

when SPI12, NAOI, AOI, and MOI1 values from the 

preceding six months were used together. 

In this study, the ANN method was chosen as the modeling 

technique. An ANN is a data-driven model that can be used 

to model complex systems. This method has been used in 

many studies for SPI prediction [e.g., 13, 14,15]. In this 

study, using precipitation data, SPI12 values, and large-

scale oscillation index data as inputs, the model predicted 

the SPI12 value with an R2 value of 0.92 and an RMSE 

value of 0.30. Similarly, Morid et al. [17] developed a 

model based on SPI inputs and index values and achieved 

an R2 in the range of 0.66-0.79 based on data from the 

preceding 6 months. Rezaeian-Zadeh [18], incorporating 

antecedent SPI, precipitation, and both the North Atlantic 

Oscillation and Southern Oscillation Index, achieved the 

highest forecasting performance, with an R² of 0.92 and an 

RMSE of 0.35 for 1-month lead time predictions during the 

validation phase. The performance metric values obtained 

in this study closely approximate those reported in the 

literature in magnitude and are at an acceptable level. 

This study revealed that large-scale global oscillation 

indices influence precipitation patterns in Kayseri, and in 

this sense, the findings agreed with those of the previous 

studies. The effects of global oscillation indices on 

precipitation and drought in Türkiye have been 

demonstrated in previous studies [3, 4, 5, 6, 7, 8, 9, 10, 11] 

Karabörk et al. [4] analyzed the variability of climate 

variables in Türkiye based on the Southern Oscillation 

Index (SOI) and NAOI and showed that NAOI affects 

precipitation and runoff during winter months. Topuz et al. 

[10] analyzed annual and seasonal precipitation data from 

29 stations in Türkiye between 1955 and 2013. The effect 

of atmospheric circulation on precipitation variability in 

Türkiye was investigated using NAOI, MCI, MOI, EMPI, 

and NCPI. As a result, it was found that the MOI better 

explained annual precipitation variability in Türkiye than 

the other indices. Duzenli et al. [9] showed in their study 

that the NAOI and AOI affect the dry days in all regions of 

Türkiye, except for the east and northeast during the winter 

months. Furthermore, when comparing the effects of large-

scale global oscillation indices on precipitation extremes 

and dry days, it was concluded that large-scale global 

indices significantly impacted the number of dry days. 

Dadaser-Celik et al. [11], using data from 238 

meteorological stations in Türkiye, also showed that large-

scale global oscillation indices significantly influence 

Türkiye’s precipitation patterns, and these effects are 

observed both annually and seasonally. 

This study distinguished the potential of predicting SPI 

using climate indices, precipitation data, and artificial 

intelligence techniques. It was suggested that new models 
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and scenarios could be developed by adding new data in 

future studies, and the performance indicators could be 

improved using such algorithms as deep learning. 
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